

# The Al Boom:

Opportunities and Outlook for the Oil & Gas Industry

## Speakers:

Alex Love, Attorney Robert Royce, Attorney Janette Uribe, Attorney



# **About the Speaker**



**Alex Love**Attorney, Oliva Gibbs



713.229.0360



alove@oglawyers.com



Robert Royce
Attorney, Oliva Gibbs



713.229.0360



rroyce@oglawyers.com

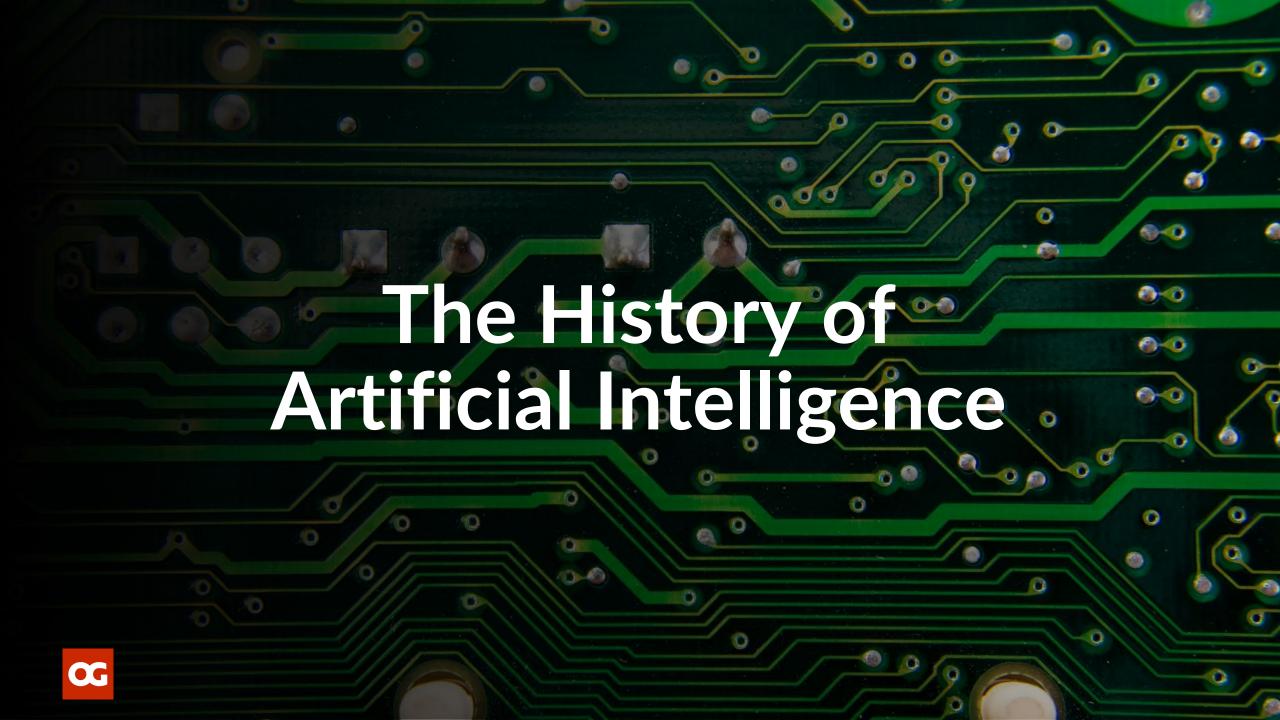


**Janette Uribe** Attorney, Oliva Gibbs

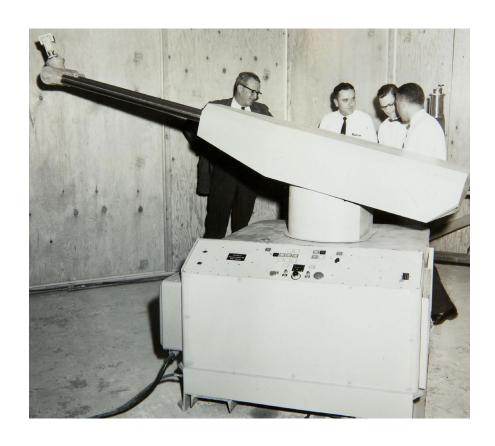


713.229.0360




juribe@oglawyers.com




## **Topics for Discussion**

- I. The History of Artificial Intelligence
- II. Natural Gas and AI Data Centers
- III. Carbon Capture and Sequestration (CCS) for Natural Gas-Powered Al Data Centers
- IV. Opportunities for Oil and Gas Professionals





# The History of Artificial Intelligence



## 1950

 Alan Turing published "Computing Machinery and Intelligence"

## 1956

• John McCarthy coined the term "artificial intelligence" at a summer workshop

## • Early 1960s

• First industrial robot, Unimate, was built



# The History of Artificial Intelligence

#### Mid 1960s

• ELIZA is an early natural language processing program designed to mimic human conversation

#### • 1980s

 Jabberwacky is a program designed to learn from human input and simulate conversation

## Today

- Al is more advanced than ever
- Model training involves adjusting billions of parameters through repeated computations that require immense processing power





## What is an Al data center?

- A facility that houses specific IT infrastructure needed to train, deploy, and deliver AI apps and services
- Requires advanced network storage, energy, and cooling capabilities to handle AI workloads









## Natural Gas and Al Data Centers



#### Natural Gas

- One of the most reliable sources of energy
- Infrastructure to produce and transport natural gas to power AI data centers is already in place
- Natural gas must be converted into electricity by turbines, which are in short supply and difficult to acquire



# **How Natural Gas Becomes Electricity**

- Natural gas is drilled, collected, and transported by pipelines to a treatment plant that removes water/waste, then sent to a power plant
- Natural gas is then converted to electricity in one of three ways:

#### Boiler

Water is boiled creating steam that spins a turbine and generates electricity

#### Combustion Turbine

- Pressurized gas turns the blades of a turbine connected to a generator
- Magnets spin inside the generator and create an electric current

#### Both

- The energy created by one turbine generates more energy in another turbine
- After one engine completes a conversion cycle, heat exhaust is transferred to a heat exchanger
- A second engine extracts energy from the heat to begin its own conversion cycle
- Electricity is then sent through power lines to be used for residential, commercial, industrial, or transportation



# Natural Gas Pipelines and Al Data Centers

## Three types of natural gas pipelines:

## Gathering pipelines

 Transport the natural gas collected from wellheads to a central collection point like storage facilities, processing plants, or transmission pipelines

## Transmission pipelines

 Move high volumes of natural gas from the production and processing plants, storage facilities, and distribution centers

## Distribution pipelines

 Deliver natural gas to homes, businesses, and facilities





# Natural Gas Pipelines and Al Data Centers

#### Al Data Center Projects

- Some of the largest projects are in areas with the densest transmission pipelines
- The high concentration of pipelines in these regions give natural gas a competitive edge for becoming the main source of power for these projects

#### Texas

- Over 58,500 miles of pipelines
- Project Stargate is a \$500 billion joint venture investment between Oracle, Softbank, and Open AI, building AI data centers that are each half a million square feet.

#### Louisiana

- Over 18,900 miles of pipelines
- With a \$10 billion investment, Meta Platforms is constructing a 2GW+ AI data center close to the size of Manhattan

#### Oklahoma

- Over 18,500 miles of pipelines
- Core Scientific and AI hyperscaler CoreWeave are building a 100MW facility
- Google has invested over \$4.8 billion in its Mayes County, Oklahoma data center campus



## **Government Incentives for Natural Gas**



## One Big Beautiful Bill Act

- Signed into law on July 4, 2025 by President Donald Trump
- Lifts restrictions on the Inflation Reduction Act on tax deductions for intangible drilling costs
  - Often between 60% and 80% of total costs



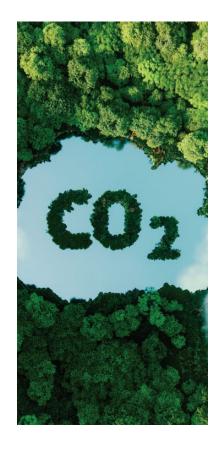
## **Turbine Supply and Demand from AI Data Centers**

#### Supply Chain Problems

- US utilities are projecting rapid growth driven by AI, electrification, and industrial expansion nearly the equivalent of adding a new California, Texas, and New York to the bulk power system
- Mitsubishi Power, GE Vernova, and Siemens Energy are the major turbine suppliers
  - Mitsubishi turbines ordered today will not be delivered until 2028-2030
  - Siemens has a record backlog of €131 billion (US\$148 billion).
  - GE Vernova new turbines will not be available until late 2028 at the earliest
- If turbine supply doesn't increase, utility production cannot keep up with consumption
- Costs of turbines have increased, costing the rate payer more money

#### Near Term Solutions

• Energy efficient solutions, virtual power plants, grid-enhancing technologies, clean pre-powering, and hybrid "power couples" sited at existing fossil generator points of interconnection






## **Carbon Capture and Sequestration**

## CCS Technology

- Can capture up to 90-95% of CO<sub>2</sub> emissions from natural gas power plants
- The US electrical grid emits 340-420 kg CO<sub>2</sub>e/MWh on average; but when paired with CCS technology, a gas-powered plant emits only 80-120 CO<sub>2</sub>e/MWh on average
- While alternative energy forms emit less CO<sub>2</sub>, gas powered plants are more dependable, cost effective, and flexible
  - CCS costs \$70-100/MWh while nuclear costs \$77/MWh and solar costs \$87/MWh
  - Without CCS, gas powered plants cost \$37/MWh
  - CCS is necessary for large-scale gas-powered plants to be environmentally sustainable
  - Even with the higher cost, CCS is still fiscally competitive with alternative forms of energy
  - Scale and regulatory incentives can further reduce gas powered CCS plant costs





# **Regulatory Incentives for CCS**

## **Section 45Q Federal Tax Credits**

| CO <sub>2</sub> End-Use                                                                                         | Credit Values Under<br>the 2018 FUTURE Act                                                         | Credit Values Under the<br>Inflation Reduction Act                                                                      | Credit Values Under the<br>One Big Beautiful Bill Act                                                                   |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| For dedicated secure geologic storage of CO <sub>2</sub> in <b>saline or other</b> , <b>geologic formations</b> | \$50/metric ton<br>for CO <sub>2</sub> captured from<br>industry, power, and<br>direct air capture | \$85/metric ton<br>for CO <sub>2</sub> captured from<br>industry & power;<br>\$180/metric ton<br>for direct air capture | \$85/metric ton for CO <sub>2</sub> captured from industry & power; \$180/metric ton for direct air capture             |
| For carbon reuse<br>projects to convert<br>carbon into useful<br>products (e.g., fuels,<br>chemicals, products) | \$35/metric ton<br>for CO <sub>2</sub> captured from<br>industry, power, and<br>direct air capture | \$60/metric ton<br>for CO <sub>2</sub> captured from<br>industry & power;<br>\$130/metric ton<br>for direct air capture | \$85/metric ton<br>for CO <sub>2</sub> captured from<br>industry & power;<br>\$180/metric ton<br>for direct air capture |
| For secure geologic<br>storage of CO <sub>2</sub> in <b>oil</b><br><b>and gas fields</b>                        | \$35/metric ton<br>for CO <sub>2</sub> captured from<br>industry, power, and<br>direct air capture | \$60/metric ton<br>for CO <sub>2</sub> captured from<br>industry & power;<br>\$130/metric ton<br>for direct air capture | \$85/metric ton<br>for CO <sub>2</sub> captured from<br>industry & power;<br>\$180/metric ton<br>for direct air capture |



# State Primacy

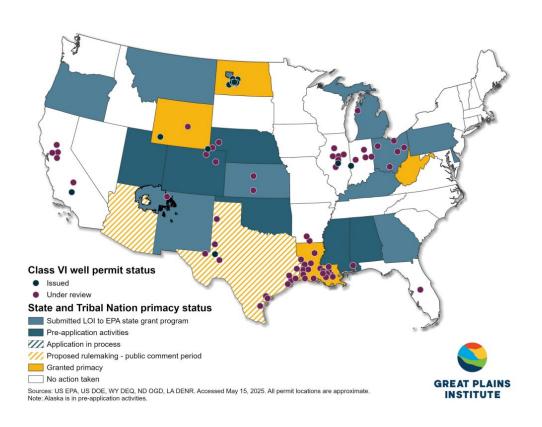


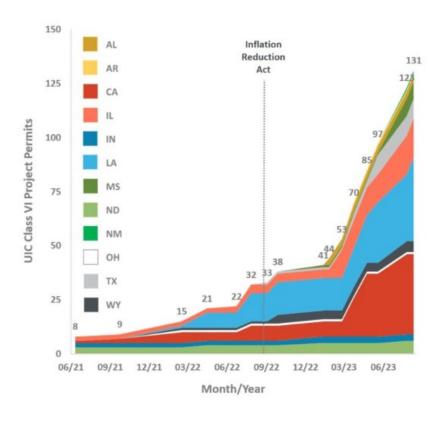
#### Class VI Wells

- Carbon must be stored in Class VI wells, which is the most EPA regulated class of disposal wells
- The EPA must grant a state primacy over Class VI wells to allow them the authority to regulate and permit these wells under the EPA's requirements
- Class VI well permits are the most stringent regulatory hurdle for CCS
- So far, only Louisiana, North Dakota, West Virginia, and Wyoming have been granted primacy



# State Primacy


#### EPA CCS initiative


- Federal government has expedited the primacy application process
- The EPA approved Texas' application for primacy in July 2025
  - The Texas Railroad Commission will be able to regular and permit Class VI wells as soon as December 2025
  - Captured carbon can be sequestered in Texas, rather than having to be transported long distances to a state with primacy
  - The decrease in transportation costs has resulted in Exxon, Oxy, and other supermajors announcing construction projects for natural gas-powered plants in Texas
  - Proximity to natural gas and the ability to sequester carbon provides a huge advantage for siting natural gas power plants





# Applications for Primacy and Class VI Well Permits







## Impact on Al Data Centers

- OBBBA reforms to Section 45Q tax credits establish uniform and substantially more valuable incentives for carbon capture
  - Gas powered plants are now an attractive option to provide electricity to AI data centers
- Integrating CCS into data center infrastructure allows operators and investors to maximize available federal carbon capture incentives while managing long term expenditures and policy uncertainties
- Pairing natural gas power with advanced CCS technology provides near-term solutions for emission reduction, operational reliability, and flexible output capacity
- Tax credits and regulatory incentives tilt the financial equation towards aggressive adoption of natural gas-powered electricity that is environmentally sustainable through CCS



# Opportunities for Oil & Gas Professionals

# **Leveraging Skillsets**

### Landmen

- Traditionally, landmen have been crucial in the success of oil and gas operations
- Al will play a significant role in site selection and data analysis
- Landmen can become subject matter experts on platforms like Land App





# **Leveraging Skillsets**

## Attorneys

- Operating AI data centers present complex legal challenges
- Operators will need guidance on energy procurement negotiations, environmental compliance, data security, and intellectual property protection



# **Leveraging Skillsets**



## Oil and Gas Professionals

- Al proliferation poses a unique opportunity for the industry due to the immense energy required to power Al data centers
- Uniquely positioned to leverage their ability to negotiate agreements concerning the land these data centers will be built and the natural gas operations that will power them
- In the ever-changing AI realm, oil and gas professionals will be called on to provide guidance and expertise on a plethora of matters



# Thanks for attending!

Subscribe to our newsletter for exclusive access to the latest OG content and top oil & gas stories.





